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Vertex (node) and edge (link)

Graph

: edge

. rvertex

Any system can be expressed as a network with nodes and links.
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Examples of complex networks:
geometric, regular

Network Nodes Edges
% BZ reaction molecules collisions
o
‘ slime mold amoehae cAMP
N o/

N, --
SR animal coats cells morphogens
A
. insect colonies | ants, termites | pheromone
mﬂocking: traffic | animals, cars | perception
T ]

o photons
n SWarm sync fireflies

Zlong-range

\

o) A

# interactions inside a local
neighborhood in 2-0 or 3-D
geometric space

= limited “visibility” within
Euclidean distance

Eileen Kraemer

Examples of complex networks:
semi-geometric, irregular

Network Nodes Edges
&ﬁ Internet outers wires
—
B2 et [ neurons synapses
ages hyperfinks
i
"';' Hollywood actors movies
§ gene regulation | proteins binding sites
== ecology web spscies competition
o

/0 O
i O o !
e} !
‘\ O OIJ
O o\ ©

# local neighborhoods (also)
contain “long-range” links:
= either “element” nodes
ocated in space
3" nodes
not located in space
= still limited “visibility”, but
not according to distance

Eileen Kraemer
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Structural metrics:
Average path length

The path length between A and B is 3

# the path fength between two nodes
A and B is the smallest number of
edges connecting them:

I(4, B) = min I(4, A, ... 4, B)

# the average path length of a network
over all pairs of N nodes is

L={i(4, B))
= YNN-1)2_, ; i(4, B)

¥ the network diameter is the maximal
path length between two nodes:
D =max I(4, B)

*property: 1 <L <D<N-1

Structural Metrics:
Degree distribution(connectivity)

The degree of A is §

number of nodes

#the degree of a node A is the number
of its connections (or neighbors), &,

#the average degree of a network is
(k) =1N Z._J_ k,

¥ the degree distrnibution function P(k)
is the histogram (or probability) of the
node degrees: it shaws their spread
around the average value

0=k =N

s EE i

T B P®
B

L e

node degqree

2014-07-01



2014-07-01

Structural Metrics:
Clustering coefficient

#the neighborfiood of a node A is the
set of &, nodes at distance 1 from 4

# given the number of pairs of neighbors:
F,= ZB.B' 1
=k (k,-1)/2

# and the number of pairs of neighbors
that are also connected to each other:

i ZB'O—AB' 1

#the ciuste: coefficient of A4 is

The clustering coefficient of A is 0.6 C,=EJ/F, =1
A clustering coefficient is a measure of  #and the nefwork clustering cosficient
the degree to which nodes in a graph (C)=1N Z'4 c,
tend to cluster together. c

A B
/) Q. = Q =
O
O X O
o) o ©
node degree clustering coefficient

(]
o

o
o A ¥ 2 VALY O ©
motifs path length and distance
E
module 1 module 2

community structure — modules and hubs



D. J. Watts and Steven Strogatz (June 1998).
"Collective dynamics of 'small-world' networks".

Nature 393 (6684): 440—442.

Table 1 Empirical examples of small-world networks

L actual -Lrandc'n Cactual Crar-com
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices {n) and average number of edges per
vertex (k). (Actors: n = 226,226, k = 61. Power grid:n = 4,841,k = 2.67.C. elegans:n = 282,
k = 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component® of this
graph, which includes ~90% of all actors listed in the Internet Movie Database (available at
http:/ /us.imdb.com), as of April 1997, For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L = L gohem DU C 3 Cingom-

D. J. Watts and Steven Strogatz (June 1998).
"Collective dynamics of 'small-world' networks".

Nature 393 (6684): 440—442.

Increasing randomness

2014-07-01
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D. J. Watts and Steven Strogatz (June 1998).
"Collective dynamics of 'small-world' networks".

< 10066000000000008
[)]
= Y
G 0.8/°% %
=00 Bl "
L] -
© 06 . 2.
o '.
0.4 N
5 Ly/Lo e
% 0.2 pr=0 ....0..0.. .
E ‘0000000000090-
O o : : : =
10 10° 10? 10" 10°
Rewiring Probability (p)
Regular: Small World: Random:
High L, High C Low L, High C Low L, Low C

Increasingly random connectivity

A small-world network is a type of mathematical graph in
which most nodes are not neighbors of one another, but most
nodes can be reached from every other by a small number of
hops or steps.
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Scale-free network

® A minority of nodes have a majority of links

o p(k) follows a power law distribution

-free

Scale

Exponential

power-law scaling: p(k) = k> or log[p(k)]=-Alog(k)

=e*k or log[p(k)]=-Ak

exponential scaling: p(k)

a0 -

n
]

SUONIBUU9 ¥ J0 Aouanbay)

number of connections, k
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Preferential attachment
(A!bert-LazIo Bara{_’basi)

e o, % 0 .
. [ ] O...-.“'. " '. , ‘ .'.\
. . .o. - . e Nk o ¢
o * o &0 I\l ®
o » . @ » L .
© ‘ . .‘.- ‘ e
®
.. .a.. ® Qe

A preferential attachment process is any of processes in
which links are distributed among a number of nodes according
to how much they already have links, so that those who are
already wealthy receive more than those who are not. (The rich
get richer)

Preferential attachment
(Albert-Lazlo Barabasi)

: ;#’*t ¥.-Zomaya

AN ﬁsn ‘;’Vm-g



Models

* Erdos-Rényi — Homogeneous
— Each possible link exists with probability p

* Scale-free — Heterogeneous
— The network grows a node at a time

— The probability IT. that the new node is connected to node
is proportional to know many links node i owns (preferential
attachment)

Regular lattice Bethe lattice Fractal

Random network WS smallworld BA scale free

2014-07-01



Brain and complex network (graph) theory

@) (b)

Undirected graph Directed graph ~ Weighted graph

Liu, 2008 Boccaletti et al., 2006

= Node (vertex) : Brain region or voxel, channel of EEG/MEG
= Link (edge) : Functional or anatomical connection between nodes

= Network analysis can reveal structural and functional organization
of the brain (Liu, 2008)

Constructing Brain Networks

Y
Histological or
imaging data

Functional brain network
Sensorimotor
N

Graph theoretical analysis

Bullmore and Sporns, 2009

2014-07-01
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network analysis of structural brain networks

| MTR: weight of connectioni - j

TI: AAL template DTI: MTR along tract
parcellation of structural el
gray matter regions connections W

for all regions i and j in AAL region

r mask

weighted structural brain

MTR welghte: co';mectlvlty network G overall network organization
matrix

*overall connectivity strength S

*overall normalized local clustering: clustering- =5
coefficient gamma

«overall normalized global efficiency:

characteristic path-length lambda

group comparison
(permutation testing)

node specific analysis

sconnectivity strength Si

*node specific path length Li group comparison of
«clustering of node i cluster- - Si, Li, Si, Bi
coefficient Ci (permutation testing)

*betweenness centrality Bi

MRI Acquisition

Segmentation T1w high res. Diffusion Spectrum Imaging

Tractography

. Lateral
Frontal c quJ occlpital
pole

Whole brain structural
connection network

Partition into 1000 ngs
». 3
7

11



Brain is a small-world network

Regular ‘Small-werld

o
[
o
o
[

Increasing randomness

Watts and Strogatz, 1998

high C high C low C
high L low L low L

» high clustering coefficient (C) — high resilience to damage in
local structures
» low average path length (L) — high level of global
communication efficiency
» Brain functional network has small-world structure,

while this property may be disrupted in damaged brain such as
AD (vulnerability to damages, decreased communication
efficiency between distant brain regions ... )

Small-world and scale-free organization of
voxel-based resting state functional connectivity in the human brain
van den Heuvel et al., Neuroimage, 2008

connectivity degree

normal, resting-state, voxel-based(N=10,000),
zero-lag temporal correlation, bandpass-filtered (0.01-0.1Hz),

z2=48
. . —_— = ;=38 temporal
unweighted, small-world and scale-free : optimal network J i
organization balance between maximum communication efficien| 082 |
and minimum wiring I ; /
61

superior thalamus

anterior & posterior
cingulate cingulate

AD, damage modeling, weighted graph, efficiency

O wm
N
L2 resting-state fMRI
[=] ) N
] VML"MWIW
-3 | VI @
scans bz Y = Cnet/Crandom
correlation = wi(ij) Windecstime :? A =Lnet/Lrandom
al bl
3 g_ INM'W'AM (e By random
scans @ Gprandom
- o
3 /Chrandom—b Crandom
=

“*L, random —» Lrandom

2014-07-01
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A resilient, low-frequency, small-world human brain functional network with highly connected
association cortical hubs (Achard et al., The Journal of Neuroscience, 2006)

MODWT (Maximal Overlap Discrete Wavelet Transform) at 6 frequency scales

Random Scale-free Brain

Largest custe size
00 02 04 06 08 10
Cargest chuster sz
00 02 04 06 08 10
Largest hustersize
00 02 04 06 08 10

00 02 04 06 08 10 00 02 04 06 08 10
8l Proportion of nodes attacked b} Proportion of nodes attacked

02 04 06 08 10
Proportion of nodes attacked

28

healthy young subjects, resting-state,
Parcellation (90 region-based), unweighted,
small-world, NOT scale-free .
resilient to targeted attack than SF network g

Table 1. Wavelet scale dependency of functional connectivity and small-world parameters for an entire human brain network

Scale Hz r R Loet Coet A ¥ o

1 0.23-0.45 0.12 0.13 9 0.534 1.28 181 142
2 0.11-0.23 00 0.2 6 0.566 112 214 192
3 0.06-0.11 039 0.39 269 0.555 116 222 19

4 0.03-0.06 0.45 0.44 249 0.525 1.08 238 219
5 0.01-0.03 0.44 0.35 14 0.554 1.04 139 230
[ 0.007-0.01 04 0.17 265 0.515 115 215 1.88
Scales 1-6 of the MODWT danote p quency intervals (Hz). ris th -regional correlation, and R isthe correlation threshold. L, and €, are themean path length and dustering coefficent, respectively, of the

thresholded network. The A and  are ratios of brain network path length and clustering coefficient, respectively, to comparable random network metrics. The equation or = /A is a scalar measure of “small-worldness.”

Alzheimer vs. Healthy subjects

A Cp 13-30 Hz B Lp 13-30 Hz
3,5
3’0 T A AAAAAA A AAAA A
2,5 - -
3_ 2,0 1
1,5 1
1,0 %
0,5
0,0 T T T T T T T 1 0,0 T T T T T T T
0,010 0,015 0,020 0,025 0,030 0,035 0,040 0,045 0,010 0,015 0,020 0,025 0,030 0,035 0,040 0,045
Threshold Threshold

«AD =SC ,p<005

2014-07-01
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cp

cluster index

2014-07-01

Cp 13-30 Hz B Lp 13-30 Hz
0,80
0,70
0,60 -
0,50 -
0,40 -
0’30 - 004 2802
St fiEEE=EEE
0,204 eeeeeeeoeeeeeee@%eeo
0,10 oooococe0000000009
0,00 T T T T T T T .
2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750 __ 2000 2. 250 2 500 2750 3000 3250 3. 500 3750
K K
-+ AD & SC ap<0.05 -g- random > ordered
Cluster index (K=3) D Path length (K=3)
0,60 4,00
3,50
3004 *
£
D 2,50
(=4
2 2,00
£
T 1,50
1,00 /
0,50
T T 0,00
ordered exp random ordered exp random
network type network type

Aap [Osc

Why does the brain process
information so quickly?

100‘b|9 neu rons
100tr synapses

14



Power grid of North America

Blackout of August 14, 2003

* Nodes: generators, transmission sub-stations, distribution
sub-stations

» Edges: high-voltage transmission lines

* 14,099 nodes: 1,633 generators, 2,179 distribution
substations, the rest transmission substations

* 19,657 edges

Blackout of August 14, 2003

: e R e .- =
The Northeast blackout of 2003 was a widespread power outage
(the Northeastern and Midwestern US and Ontario in Canada on
August 14, 2003, just before 4:10 p.m.

The blackout's primary cause was a software bug in the alarm
system at a control room of the FirstEnergy Corporation in Ohio.

Operators were unaware of the need to re-distribute power after
overloaded transmission lines hit unpruned foliage. A manageable
local blackout was cascaded into widespread distress on the
electric grid.

2014-07-01
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Types of Network Security Threats

PACIFIC fiom k3

<
=
1)

T 1 ! W
A s

“‘m«r wa ‘-"!f’_-z*.\@ .

~—— =
" suuo i

% MEXICO
\
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Biological networks have critical nodes

L1t

vhg |
QOD growth factors production
£ v Q

extracellular matrix deposition

cell proliferation
cell motility
Red
near infrared

light mitochondrion

“P
AATP j

1 ROS

tho T\

“ew

Gene transcription

AP-1

NF-kB

nucleus

Networks are often attacked: sometimes
they are robust to this attack, and
sometimes they are lethal.

2014-07-01
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Network robustness and resilience

If a given fraction of nodes or edges are removed, what happens
in the network? How large are the connected components?
What is the average distance between nodes in the
components?

Random failure vs. targeted attack

* Edge removal

— Random failure: each edge is removed with probability (1-
p) corresponds to random failure of links.

— targeted attack: causing the most damage to the network
with the removal of the fewest edges.

* strategies: remove edlges that are most likel%to break
apart the network or lengthen the average shortest path

* e.g. usually edges with high betweenness.

Higher network
importance =
Higher betweenness

18
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Betweenness centrality

Several measures capture wariations on the potion of a vertex’s impor-
tance i a graph. Let oy = 0y, depote the nunber of shortest paths from
s€VitoteV, where oy = 1 by comvention. Let og(v) denote the npumber
of shortest paths from s to ¢ that some v € V lies on, The following are
standard measures of centvality:

Cplv) = Z 2xilv) betureenmess centrality

vt (Freeman, 1977; Anthonisse, 1971)

Models

* Erdos-Rényi — Homogeneous
— Each possible link exists with probability p

+ Scale-free — Heterogeneous
— The network grows a node at a time

— The probability IT, that the new node is connected to node i
is proportional to know many links node i owns (preferential
attachment)

Exponential Scale-free

19



diameter

» The interconnectedness of a network is described by its
diameter d, defined as the average length of the shortest paths

between any two nodes in the network.

» The diameter characterizes the ability of two nodes to
communicate with each other: the smaller d is, the shorter is
the expected path between them.

Diameter Change by Failure and Attack

Size-Independent
12 = I
E SF
a o Failure .
101 o> o Attack . ) |
e a0 29 Af:- A; A0 AG A0 A0 AQ A0 AG A0 40 8O
kao a0 4G 20 AY TV
6 - -
om0 o000 oo o Qoo ooooag
4 . ‘ . ]
o fes 0.04

f
Changes in the diameter d of the network as a function of the
fraction f of the removed nodes. Comparison between the
exponential (E) and scale-free (SF) network
models, each containing N %4 10,000 nodes and 20,000 links.

R. Albert, H. Jeong, and A.-L. Barabasi, Attack and error tolerance of
complex networks, Nature, 406 (2000), pp. 378—-382.

2014-07-01
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Diameter Change by Failure and Attack
Scale-free network
Y
15}

%

N c
Internet

Rasee 20
53':"‘3. Attack

ree. 5 5
5

O

e}

o Attack
1 15 5 :)t") o O
| EENEE SN NI NNEENE NN ANENEEEE]

Failure
0
0.00

UDUDDUDDDDD
M
L
0.01

Failure
1 L 10 M 1
0.02 0.00 0.01 0.02
f
R. Albert, H. Jeong, and A.-L. Barabasi, Attack and error tolerance of
complex networks, Nature, 406 (2000), pp. 378—382.

Scale-free networks are resilient

with respect to random attack
Gnutella network, 20% of nodes removed.

(Gnutella is the first decentralized peer-to-peer network.)

574 nodes in giant component

427 nodes in giant component

21
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Targeted attacks are affective
against scale-free networks

Same gnutella network, 22 most connected nodes removed
(2.8% of the nodes)

574 nodes in giant component 301 nodes in giant component

The fragmentation process

We measure the size of the largest cluster, S, when a fraction f of
the nodes are removed either randomly or in an attack mode.

We find that for the exponential network, as we increase f, S
displays a threshold-like behavior. Similar behaviour is observed
when we monitor the average size of the isolated clusters (that is,
all the clusters except the largest one), finding its increase rapidly
until at fc, after which it then decreases to 1.

22



cluster size

node failure

Y

cluster size

0 I'l_

Iraction removed

Random network resilience

1.0
0.8
0.6
0.4
0.2

0

\

0.2

0.4 06

0.2

fraction remowved

to targeted attacks

For random networks there is smaller difference between

random failures and targeted attacks.
The size S is defined as the fraction of nodes contained in the
largest cluster (that is, S = 1 for f = 0).

Scal
08| :
06
04

R. Albert, H. Jeong, and A.-L. Barabasi, Attack and error tolerance of

0.2

. Random

0.8
0.6
0.4
0.2

ke

e-free

(b)

00 J T - S -, PSS ', ) L <5
00 02 04 06 08 10 00 02 04 06 08 10

complex networks, Nature, 406 (2000), pp. 378—382.

1.0

2014-07-01
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Fragmentation by Failure and Attack

2”a ' ' Iq,' ' ] b 1
E £ M 21 %
I 8 SF d .. ”
1 - ; I 00 04 08
a = Failure 1
o e Attack "‘i:;;:--.....
& fe 3 /fc -
1 Sirmesesslenss ol |
%.O 0.2 0.4 8.0 0.2 0.4

Network fragmentation under random failures and attacks. The
relative size of the largest cluster S (open symbols) and the

average size of the isolated clusters (filled symbols) as a function
of the fraction of removed nodes.

Fragmentation by Failure and Attack

; = 3 ,102
c -, d ' §
..o. '-.......... 2 i .o . _' 1 01

1 DIIEHEEEE;:;;;“'llllll‘.‘llll.lm g

numuumuﬂmnmu“u, G o : ° : P ]
G L Egu"suSage" " _!100
L © 1"'“ Soog 3
0 Internet R s ]
% 0. WWW B L
0 Sng, L . 0 o-o C0000cccs =
0.0 0.1 0.00 0.04 0.08 0.12
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Summary of the response of a

network to failures or attacks I

« The cluster size distribution for various values of f when a scale-

free network of parameters is subject to random failures or

attacks.
» Upper panels, exponential networks under random failures and

attacks and scale-free networks under attacks behave similarly.
For small f, clusters of different sizes break down, although
there is still a large cluster. This is supported by the cluster size

distribution: although we see a few fragments of sizes between 1

and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000).

* At a critical fc, the network breaks into small fragments
between sizes 1 and 100 (b) and the large cluster disappears. At
even higher f (c) the clusters are further fragmented into single
nodes or clusters of size two.

Exponential

network

Scale-free

network
(WWW,
Internet)
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It can be assumed that the cost of attacking is not identical for all
nodes. More important nodes are better defended, thus attacking
a more important node should be more difficult (= cost more in
the model).

Brain Hubs

+ It has been noted that some of these brain regions play a
central role in the overall network organization, as indexed by
a high degree, low clustering, short path length, high
centrality and participation in multiple communities across
the network, identifying them as “brain hubs.”

26
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(Clustering |

[Connector hub|

Community 2

Community l.‘. 3 .
[Provincial hub

Nature Reviews | Neuroscience

Brain Hubs

» Examining the function and role of these hubs is of special
interest as they play a central role in establishing and
maintaining efficient global brain communication, a crucial
feature for healthy brain functioning.

+ First studies have identified a number of key cortical hubs
(Hagmann et al., 2008) but many organizational properties of
brain hubs— particularly their structural linkages— have yet to
berevealed. ~- - .- - - =~
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Connector Hubs with Development

Eatly Chisdhood Late Chidhcod Early Adclescance La%e Adolescence
A83.4 yeurs) W511.3 years) (114147 years) (148183 years)

28
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Rich club phenomena

* The so-called “rich-club” phenomenon in networks is said to
be present when the hubs of a network tend to be more
densely connected among themselves than nodes of a lower
degree.

* The name arises from the analogy with social systems, where
highly central individuals— being “rich” in connections—often
form a highly interconnected club.

» The presence, or absence, of rich-club organization can
provide important information on the higher-order structure
of a network, particularly on the level of resilience, hierarchal
ordering, and specialization.

A Communities (modules) B C
oo E
Edge
@ Hubs @ Rich club @ core

29
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Rich club phenomena

* The strong rich-club tendency of power grids, for
example, is related to the necessity of the network to
easily distribute the load of one station to the other
stations, reducing the possibility of critical failure.

* On the other hand, the absence of rich-club organization
in protein interaction networks has been suggested to
reflect a high level of functional specialization.

Global efficiency of the network

» The inverse of the mean of the minimum path length between
each pair of nodes, L;;, is a measure of the global efficiency of
parallel information transfer E,,, in the network

EqoplG) = Ty ."__1 1 E 1

1 : Z_U:Iv NN - ijé',jEN,.l';e_;i d.",_;i
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power grid structural resilience

+ Efficiency is impacted the most if the edge removed is the one
with the highest load (e.g., links of connector hubs).

0.042
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&
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S
= 0036
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g .
2 00341 o generators — foo transmission nodes
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0.032(C ()1 ® (b) ~
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Cortical hubs

) recuneus
mid cingulate

t]élamus
.

cerebellum

31



/EX IFGrriang.R

mHIP / sty
.:MYG L \ ) / ENFGtriang.L
o BSPG.L IFGoperc.to

SIPLL 7k
"”"-‘“199'*»“ FCPCUNR

Hub score

- - n [:] - C Provincial hub

| Connector hub

> Provincial non-hub Connector non-hub
o r 7 4
Hubs Bl rrontoparietal modute [l Central module
o Il Posterior module I Ventral prefrontal mode

Va4

.'___ ;{{A @ ai1a
hS=—tn e =
¢ ? 17T >
25 4
NS =
© / 5 10 20 30 40 S0

Projection length

Nature Reviews | Neuroscience

2014-07-01

32



B 0.7t T T T -
Visual Audit. Som.-motor  Frontol. 0.6
20F ! ) R !
g = 0.5
O 15t 1z
8 o 0.4
© 10 4 E
o g 0.3
b3 L
S Il AL 2 o2
ok I M | I I MR I 1 I ul P
0 10 20 30 40 0 0.1.
Index of cortical area 0.0k ; ; i i
'%.0 0.2 04 06 08 1.0
& Participation Index P!

Supramodal
hubs

Multimodal
areas

Unimodal
EICED

a

mm RC connection
B hub connection
@ other

. rich-club nodes

' non rich-club

random attack

Visual

Auditory

Frontolimbic

Somato-Motor

7, 20a, 20b, AES 6m 35, 36, Ia, Ig, CGp, PFCL
19%, 20b%, 21a", 21b, 4, 5Al, 5Am,
ALLS, AMLS, DLS, AIL Tem 5BI, 5Bm, SII, SIV", CGa, PFCMd, RS
PLLS, PMLS, PS* SSSAi, SSAo
. ion AT", AAF", & % Enr, Hipp, PFCMil,
17°,18%, VLS P’ VP* 1%, 2%, 3a, 3b%, 4¢g pSb, Sb
b [ random attack
toy network B random attack hub connections
Il targeted RC attack
wy xIl00 &
p 0.0001
8 | p<0 0001
S
S
%S 09
&
. .
(5
'
<
S 07
50% 100%
r C x100
0.15

hub attack

e

rich-club attack

total damage to network

0.1
0.05 .
o )
50% 100%

2014-07-01

33



2014-07-01

Relationship between cortical hubs
and Amyloid beta deposition?

Af} DEPOSITION

CORTICAL HUBS Af DEPOSITION
LEFT RIGHT
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Why complexity?

Why does complexity exist in the first place, especially among
biological systems? A definitive answer to this question
remains elusive.

One perspective is based on the evolutionary demands
biological systems face. The evolutionary success of biological
structures and organisms depends on their ability to capture
information about the environment, be it molecular or
ecological.

Biological complexity may then emerge as a result of
evolutionary pressure on the effective encoding of structured
relationships which support differential survival.

Why complexity?

Another clue may be found in the emerging link between
complexity and network structure.

Complexity appears very prominently in systems that combine
segregated and heterogeneous components with large-scale
integration.

Such systems become more complex as they more efficiently
integrate more information, that is, as they become more
capable to accommodate both the existence of specialized
components that generate information and the existence of
structured interactions that bind these components into a
coherent whole.

Thus reconciling parts and wholes, complexity may be a
necessary manifestation of a fundamental dialectic in nature
(Scholapedia).
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Functional segregation and integration

» While the evidence for regional specialization in the brain is
overwhelming, it is clear that the information conveyed by
the activity of specialized groups of neurons must be
functionally integrated in order to guide adaptive behavior

« Like functional specialization, functional integration occurs
at multiple spatial and temporal scales.
* The rapid integration of information within the

thalamocortical system does not occur in a particular
location but rather in terms of a unified neural process.

How does the brain ‘bind' together the
attributes of objects to construct a unified
conscious scene?

» Neurons can integrate frequently co-occurring constellations of
features by convergent connectivity. However, convergence is
unlikely to be the predominant mechanism for integration.

* First, no single (‘master') brain area has been identified, the
activity of which represents entire perceptual or mental states.

 Second, the vast number of possible perceptual stimuli
occurring in ever changing contexts greatly exceeds the number
of available neuronal groups (or even single neurons), thus
causing a combinatorial explosion.

 Third, convergence does not allow for dynamic (‘on-the-fly")
conjunctions in response to novel, previously unencountered
stimuli.
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(A) Connections between groups are arranged such that grmg)s with similar
response selectivity are preferentially connected, are arrange .
anisotro 1call¥falgng the axis of their orientation selectivity, and connection
density falls otf with distance. This produces spike patterns with significant
correlations between some groups and not others, as well as a temporally
varyln%jEEG that reflects a mixture of synchronization and
desynchronization. Segregation and integration are balanced and
c_omplexngl is hl%h. _(B% Connection dens1£y is reduced. No statistically
significant correlations exist, and a flat EEG results. (C), Connections are of
the same overall density as in (A), but are si%read out uniformly and,
randomly over the network. The system is fully integrated but functional
specialization is lost, and complexity is low.
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